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Summary. Results of  our initial study of  the use of  parallel architecture super- 
computers in solving time-dependent quantum scattering equations are reported. 
The specific equations solved are obtained f rom the time-dependent L i p p m a n n -  
Schwinger integral equation by means of a quadrature approximation to the time 
integral. This leads to a modified Cayley transform algorithm in which the 
pr imary computational  step is a matrix-vector multiplication. Implementat ion 
has been carried out both for the MasPar  MP-1 and the NCUBE 6400 parallel 
machines. The codes are written in a modular  form that greatly facilitates 
porting f rom one machine architecture to another. Both parallel machines prove 
to be more powerful for this application than the serial architecture VAX 8650. 
Specific analysis of  machine performance is given. 
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1. Introduction 

The emerging impact of  vector processing supercomputers on the problem of 
solving the multidimensional Schrrdinger equation describing molecular colli- 
sions can hardly be overestimated [1]. Until now such studies have been carried 
out for the most part  with either serial, or minimally parallel, architecture 
supercomputers. Recent advances in computer development are, however, lead- 
ing rapidly to the availability of  massively parallel computers of  several types. 
Because these new computers will ultimately incorporate many  thousands of 
processing elements (PEs), it is of  great interest to study their suitability for 
carrying out converged quantum scattering calculations. An extremely important  
aspect of  such studies is the exploration of  methods which may not necessarily 
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be efficient for serially designed computers, but which may be ideally suited to 
massively parallel processing. 

Of special interest to us are the time-dependent wave packet methods 
[2-58] and, in particular, a variety of integral equation approaches to solving 
the time-dependent Schrrdinger equation (TDSE) for scattering [48, 50, 51, 58], 
ultimately including inelastic and rearrangement processes. In particular, we 
have as a goal the study of systems containing three bodies. Such systems lead 
to partial differential equations in six spatial variables, plus the time (three 
additional variables describe the center of mass motion of the atoms and are, 
hence, exactly separable in the absence of external forces). By considering the 
TDSE, we take advantage of its initial value character, as opposed to the 
boundary value nature of the time-independent Schr6dinger equation. For the 
latter, simultaneous imposition of all appropriate boundary conditions creates 
substantial (though not insurmountable) complications [1]. The integral equa- 
tion form of the TDSE provides the unique solution that describes the collision 
process in a manner most directly corresponding to experiment. The asymptotic 
behavior of the wave function is automatically ensured by the time evolution of 
the packet. Further, scattering information is obtained over the range of ener- 
gies included in the original initial wave packet; one deals with rigorously 
quadratically integrable functions, and the integral equation approach automat- 
ically and rigorously separates the dynamics into a part governed by a reference 
Hamiltonian, Hr, and a disturbance Hamiltonian, Ha, (which do not commute 
with one another). This leads to a great deal of flexibility in the general 
time-integral equation approach we are exploring [58]. The separation of Hr 
and Hd implies that one can evaluate the action of each in its diagonal 
representation, and switch between representations as appropriate [58]. In the 
case of three body systems, one may further reduce the number of degrees of 
freedom from seven to four by taking advantage of the isotropy of space. 
This implies conservation of total angular momentum, and one may exactly 
separate three angular degrees of freedom (the three Eulerian angles which 
specify the orientation of the three particle triangle in space). This leads to 
coupled time-dependent equations containing the three remaining variables 
which specify the shape and size of the triangle formed by the three bodies 
[ 1, 59]. 

The basic procedure employed to solve the TDSE is independent of whether 
one deals with simple two body scattering (which is equivalent to scattering of an 
single "effective" particle of reduced mass p by an infinitely massive center of 
force) or a three body system. The essential features of the approach are (a) the 
calculation of what amounts to a discretized time translation operator or matrix 
(which evolves the wave packet forward in time), (b) the calculation of the initial 
vector (the initial wave packet evaluated on a grid of points at time t = 0), (c) 
the multiplication of the state vector by the time translational matrix, (d) the 
calculation of the scattering amplitudes at the desired energies. The last item can 
be done in several ways, including projection of the wave packet onto the final 
states at a time when the packet has left the interaction region [25, 31], or the 
calculation of the time-to-energy Fourier transformation of the time-dependent 
amplitude density and projection onto the appropriate final state [50, 55, 56]. 
The former yields the S-matrix while the latter yields the T-matrix. As we shall 
see, the dominant computational step is the calculation of the product of the 
time translation matrix with the solution vector. This is ideally suited to parallel 
architecture supercomputers. 
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The time-integral equation approach has a number of attractive features: (a) 
there is great flexibility in the choice of the reference and disturbance dynamics 
[58] and in the choice of computational algorithm to be used [48, 50, 51, 58], (b) 
the approach can readily treat time-dependent interactions, (c) results can be 
obtained for the scattering at any energy having significant amplitude in the 
original wave packet [48, 50, 58], (d) the main computational step in all of the 
algorithms we are considering is forming the product of a matrix and a vector, 
(e) boundary conditions are automatically satisfied due to the initial value nature 
of the TDSE [2-58], (f) the approach is naturally suited to treatment using 
massively parallel computers, (g) the presence of energetically nonaccessible 
(closed) channels creates no problems with stability. 

In this paper, we report the results of our first implementation of the 
time-dependent integral equation approach to scattering on both moderately and 
massively parallel computers. The problem chosen for this first study is a 
standard potential scattering of a particle by a spherically symmetric potential. 
In this case, the angular degrees of freedom are exactly separable, leaving one 
with a two-dimensional (time and radial distance) partial differential equation. 
Even for this simple case, however, one may test the relative efficiencies of 
parallel architecture computers since the time and distance are discretized, 
leading to an expression for the wave packet at the new time in terms of the 
product of an N x N matrix (N = the number of radial grid points) times an 
N x 1 vector (the values of the wave packet on the radial grid at the preceding 
time). Thus, though the problem is a simple one, it will nonetheless enable us to 
illustrate the potential power of parallel processing computers for scattering. 

We note that the present study takes advantage of the Iowa State University] 
Ames Laboratory Scalable Computation Facility (SCF). The SCF is a//-test site 
for parallel architecture computers, and, as such, provides an ideal environment 
for exploring the relative merits of such machines. At present, the SCF has 
available a MasPar MP-1 and an NCUBE 6400. The MP-1 is a massively 
parallel machine while the NCUBE is a moderately parallel machine. Other 
parallel architecture computers will be added when available. 

The general strategy was to develop separate "modules" appropriate to the 
machine architectures for the matrix-vector operations. The relevant modules for 
the particular parallel computer to be used were inserted into an applications 
code, which is essentially the same for both computers. This greatly facilitates 
portability of the codes between different machines. 

The plan of this paper is as follows. In Sect. 2, we briefly summarize the 
equations describing a simple scattering system. In Sect. 3, we discuss some 
properties of and the implementation of the problem on the MP-1. Section 4 
contains a similar discussion for the NCUBE 6400. The results are presented and 
discussed in Sect. 5. Finally, an indication of future work is given in Sect. 6. 

2. Time-dependent integral equations for scattering 

The time-dependent Schr6dinger equation is given by: 

7s(t) = HT'(t)  (1) ih 

It is easy to verify that if the full Hamiltonian, H, is written as the sum of a 
"reference dynamics" Hamiltonian, Hr, and a "disturbance" Hamiltonian, kid, 
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then the exact solution of  Eq. (1) may be written as [51, 58]: 

~(t) = --h dt' exp[ - iH, ( t  - t')/h]Hd~(t') + exp( -H,z /h )~( t  - z) (2) 
- z  

Here, ~(t) is the wave function at the current time t, and g~(t - z )  is the wave 
function at the previous time t - z. We note that g~(t) depends also on all of  the 
spatial variables needed to specify the positions of the particles in the system. We 
are exploring a variety of methods for developing algorithms for calculating 
~(t). For the present study, we simply approximate the integral over t' by the 
trapezoidal rule, and then solve formally for ~(t). The result is [51, 58]: 

~ ( t ) =  I + - ~ H  d exp( - iH,  z/h) 1 - - - ~ H  d ~ ( t - z )  (3) 

In this paper, we shall take as H, the potential: 

H~ = V (4) 

and the kinetic energy, K, as Ha; that is: 

Hd = K  (5) 

We consider a structureless particle with spherical polar coordinates (R, O, (o), 
and assume spherical symmetry, so that: 

V = V(R) (6) 

where V(R) is taken explicitly to be an attractive exponential interaction of  the 
form, - e x p ( - - R ) .  The initial wave packet 7~(t = 0) is assumed to be: 

7J(t = O) = YLM(O, q~)ZL(R [0) (7) 

corresponding to an initial state with well defined orbital angular momentum: 

LZYLM(O, e~) = L(L + 1)h2yLM(O, (a) (8) 

with z-component of  angular momentum: 

Lz YL~t(O, qb) = MhYLM(O , (9) (9) 

and with an initial radial wave packet, xL(R [0). Then it is easy to express Eq. (3) 
as [58]: 

zL(Klt  ) = 1 + ~ K  2 -~ dRRZjL(KR) exp[-iV(R)~/h] 

× f :  dK'K'2jL(K'R)[1--~h K'21XL(K'[t -- z ) (10) 

where p is the particle's mass, ZL(K[t) is the Bessel transform: 

f: ZL(K i t ) = 2 dRR2jL(KR)zL(R I t) (11) 

andjL(KR) is a spherical Bessel function. Finally, one discretizes K and R so that 
Eq. (10) becomes: _=_[ "K21 - ' N  ZL(KjIt) 2 1 + ~ ARR2mJL(KjRm) exp[- iV(Rm)z/h ] 

4h# 1 j r n = l  

x n=, A K K ~ j L ( K . R m )  1 -?-~K.  z~(Knlt -~) (12) 
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Note that: 

and: 

Rm =mAR (13) 

Kn = nAK (14) 

zL(R[t) = dKK2jL(KR)zL(KIt) (15) 

Clearly, these equations involve the product of an N x N matrix and a vector of 
dimension N × 1. Note, one also may define the matrix: 

[ i7: K2~F i~ 1-1 M(j,n)= 1 - - ~  niL1 +~-fiK; K2nARAK2rc 

N 

x ~ R~jL(KjR,,) exp[ - iV(Rm)¢/h]jL(KnRm) (16) 
m = l  

which must be computed once at the beginning of the calculation. Then the time 
evolution simply involves forming the product of the matrix M(jln ) with the 
vector zL(Knlt--~). In the present study we have used the matrix jL(KmRn) ; 
however, if the number of time steps is much larger than N, the M(j, n) 
approach will be more efficient. 

3. MasPar implementation 

The strategy for the computation (for both parallel architectures) involves (1) 
setting up the problem (specification of various computational parameters such 
as the time step z, step sizes AR and AK, number of R and K grid points, etc.), 
(2) implementing the time step loop in which the current wave function and the 
current contribution to the tangent of the phase shift are computed, (3) carrying 
out the final analysis. In the time step loop, the various spherical Bessel 
transforms are computed; each of these involves taking the product of an N × N 
matrix with an N x 1 vector. In both calculations (i.e., for the MasPar and the 
NCUBE machines) this is the time consuming step and therefore the goal is to 
have as efficient an algorithm for this step as is possible. We now discuss some 
details of the MasPar implementation, following the discussion given in Ref. 
[6O]. 

A strictly top-down approach (i.e., one where the principal objectives are 
identified and the code structure is dictated by expanding the level of detail) was 
used in the software development resulting in an extremely clean and well 
structured code. As with more conventional supercomputers, specific vector 
operations were implemented as stand-alone calls and sequestered into a ma- 
chine-specific vector library separate from the application code. These vector 
library routines will be discussed in detail later. Separation of machine-indepen- 
dent routines helped enormously in porting to the NCUBE. 

The MasPar MP-1 is a single-instruction stream multiple-data stream 
(SIMD), or "data parallel" computer. A single instruction, issued by a central 
control unit and executed on each of the processing elements (PEs), operates on 
a different datum on each PE. There exist control structures to turn off selected 
PEs giving more control over which data the PEs operate on. All PEs are 
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connected in a very high-speed toroidal mesh. The MP-1 configuration currently 
available at the SCF is an 8192 PE machine with 16 Kbytes of memory per PE. 
Peak speed is rated at 556 single-precision MFLOPS, and 10.2 BIPS. The 8K 
PEs are arranged in a 128 by 64 grid. 

On all parallel computers it is important to involve as many processors as 
possible in the computation; for the MP-1 this is especially true. Since all PEs 
execute the same instruction stream, load balancing becomes a critical issue. 

In this vein, we have chosen to distribute matrix elements to the PEs in a 
scattered decomposition as shown in Fig. 1. The PEs differ at most by one 
matrix element in the computation load they bear. Formally, matrix element aij 
is mapped to PE ( x , y )  by the following relations: x = j m o d n x p r o c ;  
y = i rood nyproc, where nxproc is the number of  PEs in a row (128), and nyproc 
is the number of  PEs in a column (64). 

This scattered decomposition has the desirable feature that a given row of the 
matrix is stored entirely on an easily computed row of  PEs. The same holds true 
for columns. This property contributes greatly to the efficiency and ease of 
implementation of the matrix-vector multiply routine. 

An important fact must be noted at this point about the maximum possible 
size of  a vector. All vectors in this application are of  the same length, equal to 
the dimension of the Spherical Bessel transformation matrix. The amount  of 
memory, M, consumed by this matrix per PE is: 

M = [(N/nxproc)][(N/nyproc)](storage needed for datum) (17) 

where the bracket [ ] indicates that the enclosed number is rounded to the next 
highest integer. The storage needed for a double precision word is 8 bytes, and 
for a single precision word it is 4 bytes. 

As stated earlier the bulk of the computational effort is expended in the 
matrix-vector multiply operation. Since the Spherical Bessel matrix is symmetric, 
and is the only matrix in this application, vectors may be thought of  as either 
columns or rows. We choose the row interpretation here. 

In order to (post)multiply an N × N matrix by an N x 1 column vector, we 
must first transpose the vector into a row vector, then compute dot products 
with each of the N rows of the matrix, and finally transpose the resulting column 
vector into a row vector. To perform these operations on the (scattered) matrix 
and (linearly distributed) vector stored on the MP-1 PE array, we use the 
following algorithm (see Fig. 2): 

(1) Consolidate vector from linearly distributed decomposition to a scattered- 
row format on a single PE row, 

(2) Broadcast consolidated vector to all PE rows, 

(3) Perform partial dot products with their matrix and vector elements for all 
PEs, 

(4) Add up partial sums on all rows to give a resultant column vector, 

(5) Transpose and move resultant column vector into the standard linearly 
distributed format. 

Note that all but the third step in the above algorithm imply a considerable 
amount of  communication between PEs. This counter-intuitive method actually 
improves the efficiency of the matrix-multiply over methods which use less 
inter-PE communication. 
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Fig .  1. M a s P a r  m a t r i x  d e c o m p o s i t i o n .  A n  8 x 8 m a t r i x  is s h o w n  fo r  i l lus t ra t ion  p u r p o s e s  only .  In  

gene ra l  the  m a t r i x  is N x N.  Also ,  a 4 x 4 P E  a r r a y  is s h o w n  f o r  i l lus t ra t ion .  A c t u a l l y  nxproc = 128 

a n d  nyproc = 64 o n  the  sy s t em used.  In  t he  i l lus t ra t ions ,  d ig i t  pa i r s  r ep re sen t  ( r o w ,  c o l u m n )  m a t r i x  

e lement  indices  

Fig .  2. M a s P a r  m a t r i x - v e c t o r  mu l t i p l i ca t i on .  H e r e  v is the  ini t ial  vec to r  a n d  r is the  f inal  vec tor .  See 

text  f o r  a c o m p l e t e  desc r ip t ion  o f  the  m u l t i p l y  s teps 

Fig .  3. N C U B E  m a t r i x  a n d  vec to r  d e c o m p o s i t i o n  

Fig .  4. N C U B E  m a t r i x - v e c t o r  mu l t ip l i ca t ion .  See tex t  fo r  a c o m p l e t e  desc r ip t ion  o f  the  p rocess  

4. N C U B E  implementation 

Porting the scattering code to the N C U B E  was largely a matter of  providing the 
appropriate vector and matrix libraries. In fact, the wave-propagation loop 
transferred and ran unaltered to the NCUBE.  Only the machine-dependent code 



304 D.K. Hoffman et al. 

had to be implemented anew. This observation is perhaps the first step toward 
debunking the myth that it is categorically difficult to port  an application from 
one parallel architecture to another, especially between different classes of  
parallel architectures (i.e., SIMD to MIMD). 

The NCUBE 6400 is a multiple-instruction stream, multiple-data stream 
(MIMD) parallel computer. Each processing element, or "node",  executes its 
own program asynchronously from the other nodes. Nodes coordinate their 
activities by sending messages to one another; they are connected by a 
2.2 MByte/s bidirectional links in a hypercube configuration. There is a 60/~s 
delay for each message before data are actually transmitted, due to software 
overhead. 

The NCUBE 6400 system configuration at the Ames Laboratory is a 64 node 
system. Node 0 has 4 MBytes of memory; the others have 1 MByte each. Peak 
speed is rated at 171 single-precision MFLOPS, 130 double precision MFLOPS, 
and 640 MIPS. 

H e r e  we develop a mathematical construct which is of  considerable value in 
describing the decomposition of both matrices and vectors in the NCUBE. While 
a scattered decomposition works well on the MP-1, it is not applicable to the 
MIMD NCUBE where communication is not nearly as fast. A detailed discus- 
sion of  why a scattered decomposition is not used for the NCUBE implementa- 
tion is given below. 

Vectors are more easily managed if they are partitioned into nearly equal 
length segments. In cases where the length of  a vector is a multiple of  the number 
of processors, the length of a segment is simply the vector length divided by the 
number of processors. For  nonintegral multiple sizes, a slightly modified formula 
must be used. First, we define a function which gives the total number of 
elements belonging to all processors with processor number less than that of the 
processor in question. That is: 

c u m e N ,  i = {N(i)/(nproc) } (18) 

where i is the processor number in question, and n p r o c  is the total number of 
processors. Here the bracket { } indicates the integral part of the number it 
contains. We next define the function nlOCN, i by: 

nlOCN.i = c u m e N ,  i+ ! - -  £ u m e N ,  i ( 1 9 )  

It tells how many rows of a matrix are stored by processor i; this is also the 
number of vector elements stored by i. We now have an easily evaluated function 
which yields the number of elements a particular processor possesses, even for 
vector sizes which are nonintegral multiples of the number of processors. 

Matrices are decomposed in horizontal strips, or groups of rows. Thus for an 
N × N matrix, processor i will store rows cu meN. i  ~ cumeu .~+ 1 -- 1 inclusive. A 
given processor stores the same rows of a matrix as it does elements of a vector, 
as shown in Fig. 3. 

In the vector consolidation step for the MP-1 matrix-vector multiply al- 
gorithm, the vector is quickly and easily consolidated onto a single row of PEs 
because of  the very fast communication links. This operation takes place with the 
number of  communication steps proportional to the vector length. On the MP-1, 
both the time to initiate a message and the time to send a datum are much faster 
than the time required to perform a floating point operation. 

Such a communication performance is not typical of  MIMD computers, and 
the NCUBE is no exception. Message start-up time alone is over 100 times more 
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expensive than a single floating point operation. Once data actually start moving, 
the relative cost drops to about 4. Clearly, a few long messages are much 
preferred over many short ones for the NCUBE. This fact must be used as a 
guide in designing the task of vector consolidation on the NCUBE. Let us accept 
for the moment that the entire vector must be assembled on every node in the 
hypercube. We must devise a decomposition which allows us to put the vector 
together with the minimum number of messages between nodes, and with the 
least amount of unnecessary data movement. If the vector were distributed in the 
scattered decomposition, much rearranging would be necessary to put the 
elements in proper order once they were consolidated onto a single node. If each 
node stores contiguous elements of the vector, then no rearranging will be 
necessary. 

The above discussion solves the problem of unnecessary data movement, but 
we must also consider the number of messages. Many efficient algorithms have 
been developed that utilize the hypercube interconnect to its full potential. Of 
interest to us here is the "hypercube collapse" method. Pairs of nodes exchange 
data across each hypercube dimension in turn. This scheme consolidates data in 
a number of communication steps equal to the log of the number of processors, 
which is absolute minimum number of messages possible. 

Matrix-vector multiplication is less complicated with a strip-wise matrix 
decomposition since a single node contains whole rows of the matrix. Below is 
the algorithm we use to perform the multiplication, which is illustrated in Fig. 4: 

(1) Consolidate vector from segment-wise decomposition onto every node in the 
hypercube. (Note that the hypercube broadcast is used here, which is not the 
inference that might be drawn from the 2-D depiction of arrows in Fig. 4.) 

(2) Perform complete dot products between consolidated vector and each matrix 
row that a node owns and store dot products into result vector. Note that the 
result is already decomposed in segments. 

5. Results 

There are a variety of comparisons that can be made in order to assess the 
performance and efficiency of parallel supercomputers. By "performance" we 
mean the rate at which operations are carried out in aggregate for all processors 
of a machine. "Efficiency" is the ratio of observed performance to maximum 
theoretical performance. First, it was found that both the MP-1 and the NCUBE 
gave the correct phase shifts to within rounding accuracy and both machines 
significantly surpassed the serial architecture VAX 8650 in performance. Calcula- 
tions were done using both single and double precision, with good accuracy for 
both and higher computation performance for the former. (However, it is not 
clear whether single precision will be adequate for more challenging three body 
systems.) Second, it was found, as expected, that the matrix vector multiplication 
was the major computational effort for both parallel machines. It should be 
noted also that both C-language and Fortran codes were tested on the MasPar 
machine. However, the Fortran compiler is far from optimal and produces 
machine code that ran no faster than the VAX 8650. 

Third, it is of interest to compare the MP-1 and NCUBE 6400 as the 
dimensions of the matrices and vectors are increased. In Fig. 5 we see that the 
machines have nearly the same performance for N < 512. (The performance of 
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the VAX 8650 and the FPS-264 are also included in the figure for comparison.) 
In fact, for the scattering system considered, results are completely converged 
with 512 radial grid points. However, by considering larger N, we can gain 
insight into how the two machines will perform when more challenging systems 
are studied. It is clear from Fig. 5 that, for the present application the NCUBE 
6400 reaches its peak computation speed for floating point operations at a lower 
value of N than the MP-1. Of course, it is also clear that the MP-1 is inherently 
the faster computer for floating point operations, and this will become manifest 
when treating larger problems. 

However, in Fig. 6 we compare the efficiency of the two machines. It is seen 
that the NCUBE attains a higher efficiency, and does so at a lower N than the 
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MP-1. Detailed analyses indicate that the principal factors responsible for this 
behavior are (a) the high initial cost of starting a message on the NCUBE 
decreases in relative importance as N increases, and (b) the high loop-start-up 
time of the MP-1 [60]. 

A fourth aspect of great interest is the manner in which the calculation scales 
with problem size, N, on the two computers. Since the dominant computational 
effort is the matrix-vector multiply, we know that the present integral equation 
method should scale as N 2 on a serial machine. On a parallel computer one 
expects, theoretically, a scaling reduction that is determined by the number of 
PEs that can be employed. If this number is P, then the theoretical limit is a scale 
factor of N2/p. For the simple problem at hand the total number of processors 
for the MP-1 far exceeds the number of grid points required for a converged 
calculation, and thus if one processor could be assigned to each grid point, the 
calculation would scale as N. However, we actually do somewhat better than this 
because we are able to use all of the processors in the calculation. Thus, even 
though the calculation still scales as N 2 (like for the serial machine) the 
performance is better than the linear dependence which would be obtained if 
there were one processor per grid point. The situation is graphically displayed in 
Fig. 7, and illustrates the obvious but important fact that for any finite 
calculation both the scaling and the size of the coefficients in the scaling relation 
are important in determining the dependence of performance on problem size. 
The quadratic dependence of the NCUBE calculation on problem size is shown 
in Fig. 8. 

On the basis of this initial study we have concluded the following. First, 
although the two machines we have used incorporate different architectures, the 
performance of each, measured in MFLOPS, is essentially the same (at least for 
N ~< 512). For N > 512, the greater power inherent in the MP-1 comes into play, 
and this machine is able to achieve a higher MFLOPS performance. However, 
the NCUBE remains more efficient, attaining close to its nominal MFLOPS 
performance at a smaller N value. 
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Second, both parallel machines outperformed the serial architecture VAX 
8650 used for comparison. Further, the power of the parallel machines becomes 
increasingly manifest as the problem size is increased, due to the low scaling rate 
with N on the parallel machines compared to the serial VAX machine. This 
bodes very well for the potential usefulness of parallel machines for treating 
really large scattering problems, which are impractical for serial machines. In 
absolute terms, the NCUBE 6400 achieved 150 MFLOPS (single precision) and 
120 MFLOPS (double precision) when N = 2048, while the MP-1 attained about 
350 MFLOPS (single precision) and 190 MFLOPS (double precision) for the 
same size problem. These speeds are quite respectable compared to what can be 
achieved with a CRAY-type supercomputer, and attest to the suitability of 
parallel architecture computers for quantum scattering treated via the time-de- 
pendent integral equation formalism. 

Third, we find that portability of codes between the two machines of quite 
different parallel architectures posed little problem due to the modular structure 
of the code. It was possible to concentrate the machine dependence of the codes 
into the modules. Thus, the various matrix-vector operations were compartmen- 
talized, and written in the appropriate manner for the specific machine on which 
the code was to be run. These were then inserted as appropriate into a machine 
independent "driver" code. We anticipate that this is a general strategy that 
should be followed in order to minimize the effort required to port the code 
between various parallel computers. 

Fourth, we have found that, at least for the existing compilers, codes written 
in C-language are much more efficient than those written in Fortran and 
parallelized by the compiler. Of course, as more effort is expended in optimizing 
the Fortran compiler, this situation may change. However, at present, only codes 
written in C will be able to take full advantage of the parallelism. 

Finally, the present study indicates that parallel architecture will make 
possible the efficient implementation of new strategies for carrying out quantum 
scattering calculations. 
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6. Future studies 

The next step in exploring the use of parallel processing supercomputers will be 
to carry out calculations for more challenging atom-diatom collision systems. 
The necessary generalization of the modified Cayley equations to describe such 
systems has already been carried out [58]. The major complication is that the 
single packet ~u(t) is replaced by a finite set of ~kn(t), where n is a quantum index 
that refers to the additional internal degrees of freedom in the system. The 
quantum representation can be chosen in a variety of ways, depending on which 
operators one desires to make diagonal. We expect to carry out such calculations 
in the near future. 

In addition to the modified Cayley method, we are developing a number of 
other time-dependent integral equation approaches which should also be highly 
suited for use on parallel processing supercomputers. The most promising of 
these, at the present, is a three-term recursion formula for computing the wave 
packet at the current time from its value at two previous times [61]. Again, the 
implementation for atom-molecule collisions can be readily carried out. We will 
be adapting these recursion methods to parallel architecture computers, and 
applying them to a variety of scattering problems. 

Finally, we will be testing these time-dependent methods on other architec- 
ture parallel processing supercomputers. 
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